BENZYLIDENE DERIVATIVES OF 5-NITRO- AND 5-AMINOBENZO[b]-3(2H)-THIOPHENONE G. A. Yugai, M. A. Mostoslavskii, Yu. L. Yagupol'skii, and N. P. Makshanova UDC 547.735:542.953 Continuing our investigations of photochromic compounds obtained from benzo[b]-3(2H)-thiophenone [1,2], we have synthesized a number of previously undescribed substances (III-XIII). Compounds III-VII were obtained by the condensation of 5-nitro-3-acetoxybenzo[b]thiophene (I) with various benzaldehydes, while 5-acetamido-3-acetoxybenzo[b]thiophene (II) was used for the synthesis of VIII-XIII. Although the condensation of aldehydes with I and II proceeds more slowly and gives lower yields than in the case of non-acetylated benzo[b]-3(2H)-thiophenones, the use of the latter is complicated by their lability. The conditions used for the condensation — heating I or II with aldehydes in acetic acid containing water and hydrochloric acid to 80-100°C — led to resinification of I and II during the reaction. Some characteristics of the compounds obtained are presented in Table 1. It is apparent from Table 1 that the absorption maxima of the 5-amino derivatives are shifted bathochromically as compared with the heteroring-unsubstituted thioindogenides; the maxima of the 5-nitro derivatives experience a hypsochromic shift. This is apparently associated with modification of the electron-donor capacity of sulfur. It was demonstrated that the introduction of an amino group into the 5 position of the heteroring generally leads to a sharp deterioration in the photoisomerization capacity of the compounds. TABLE 1. Characteristics of 5-Nitro- and 5-Amino-2-benzylidene-benzo[b]-3(2H)-thiophenones (III-XIII) | Comp. | R | х | mp, °C | Empirical
formula | Found, % | | | | Calc., % | | | | |---------------------------------------|--|--|---|--|--|---|--|---|--|---|---|---| | | | | | | С | Н | N | s | С | H | N | s | | III IV V VI VII VIII IX X XI XII XIII | NO ₂
NO ₂
NO ₂
NO ₂
NH ₂
NH ₂
NH ₂
NH ₂ | 4-CH ₃
4-OH
4-NH ₂
2-F
3-NO ₂
H
4-CH ₃
4-OH
4-F
4-Cl
2-NO ₂ | 255—256
Above 300
223—224
261—262
279—280
291—292
Above 300
Above 300
293—294 | C ₁₆ H ₁₁ NO ₃ S
C ₁₅ H ₉ NO ₄ S
C ₁₅ H ₁₀ N ₂ O ₃ S
C ₁₅ H ₈ FNO ₃ S
C ₁₅ H ₈ N ₂ O ₅ S
C ₁₅ H ₁₁ NOS
C ₁₆ H ₁₃ NOS
C ₁₅ H ₁₁ NO ₂ S
C ₁₅ H ₁₀ FNOS
C ₁₅ H ₁₀ CINOS
C ₁₅ H ₁₀ O ₂ O ₃ S | 64,5
60,4
60,6
60,1
54,9
71,0
70,9
67,0
66,3
62,4
60,4 | 3,8
3,2
3,4
2,7
2,4
4,2
4,9
4,1
3,6
3,5
3,4 | 4,8
4,7
9,4
4,7
8,8
5,6
5,3
5,2
4,9
9,2 | 10,6
10,6
10,5
9,6
12,4
11,7
11,8
11,8
11,0 | 64,6
60,2
60,4
59,8
54,9
71,1
70,9
66,9
66,4
62,6
60,4 | 3,7
3,0
3,4
2,6
2,4
4,3
4,9
4,1
3,7
3,5
3,4 | 4,7
4,7
9,4
4,6
8,5
5,5
5,2
5,2
5,2
4,9
9,4 | 10,8
10,7
10,8
10,6
9,8
12,7
12,0
11,9
11,8
11,1
10,8 | Rubezhnoe Branch, Scientific-Research Institute of Organic Intermediates and Dyes, Rubezhnoe. Institute of Organic Chemistry, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 8, pp. 1148-1149, August, 1972. Original article submitted December 14, 1971. © 1974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00. TABLE 1 (continued) | | Spectra in alcohol | | | | | | | | |---------|-----------------------|--------------|----------------------|--------------------|---------------------|----------|----------|--| | Comp. | before irrac | diation | after irradiation• | | isosbesti | Yield, % | | | | | λ _{max} , nm | ε • 10-4 | λ_{max} , nm | s·10 ⁻⁴ | λ, nm | ε · 10-4 | | | | III | 438 | 1,88 | 440 | 1,34 | 451 | 1,06 | 88 | | | IV
V | 450†
450 | 2,32
2,88 | 450 †
451 | 2,32
2,24 | 465 | 1,78 | 92
92 | | | vi | 432 | 1,66 | Decomposes | | | 1,70 | 90 | | | VIÎ | 424 | | 426 ‡ | | 446 🛨 | | 93 | | | VIII | 451 | 0,73 | 453 | 0,67 | 480 | 0,36 | 57 | | | IX | 453 | 0,92 | 455 | 0,77 | 477 | 0,53 | 58 | | | X | 460 | 1,36 | 460 | 1,32 | 490 | 0,56 | 53 | | | XI | 450 | 0,71 | 452 | 0,62 | 475 | 0,42 | 55 | | | XII | 453
452 ‡ | 0,76 | 455
455 ‡ | 0,69 | 478
499 ‡ | 0,45 | 53
74 | | ^{*}Illuminated with a 1000-watt incandescent lamp for 20 min. ## LITERATURE CITED - 1. M. A. Mostoslavskii and M. D. Kravchenko, Khim. Geterotsikl. Soedin., 58 (1968). - 2. G. A. Yugai, M. A. Mostoslavskii, and T. V. Denisova, Khim. Geterotsikl. Soedin., 1326 (1970). [†] This compound did not isomerize. [‡] These compounds are only slightly soluble in alcohol.